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1. Introduction

Recently, it has been realized that there are restrictions on the existence of type II and

eleven-dimensional supergravity backgrounds with near maximal number of supersymme-

tries. This was initiated in [1] where it was shown that IIB backgrounds with N = 31

supersymmetries are maximally supersymmetric. Later this was extended to IIA back-

grounds in [2]. These results mostly follow from an analysis of the algebraic Killing spinor

equations.
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Eleven-dimensional supergravity backgrounds with 31 supersymmetries also admit an

additional Killing spinor and so are maximally supersymmetric. To show this, one first

proves that the supercovariant curvature of N = 31 backgrounds vanishes subject to the

field equations and Bianchi identities of eleven-dimensional supergravity [3]. This demon-

strates that the N = 31 backgrounds are locally maximally supersymmetric. Then one

shows that there are no discrete quotients of maximally supersymmetric backgrounds

which preserve 31 supersymmetries [4]. These results exclude the existence of preonic

backgrounds [5] in type II and eleven-dimensional supergravities.

Most of the above results have been obtained by adapting the spinorial geometry tech-

nique for solving Killing spinor equations [6] to backgrounds with near maximal number

of supersymmetries. The investigation of discrete quotients of maximally supersymmetric

backgrounds relies on techniques developed in [7, 8]. Similar results hold for some su-

pergravities in lower dimensions [9]. However in non-maximal supergravities in four and

five dimensions, it is possible to construct preonic backgrounds as discrete quotients of

maximally supersymmetric ones [10].

In this paper, we show that IIB backgrounds with N > 28 supersymmetries are max-

imally supersymmetric. For this, we first use the property that N > 24 supersymmetric

IIB backgrounds are homogeneous spaces [11]. This in particular implies that the one-form

field strength P vanishes, P = 0. As a result the algebraic Killing spinor equation of IIB

supergravity is linear over the complex numbers and so it always has an even number of

solutions. In addition, an application of the spinorial geometry technique reveals that if

N = 30, then the three-form field strength vanishes as well, G = 0. Therefore one con-

cludes that for all N > 28 IIB backgrounds, the algebraic Killing spinor equation implies

P = G = 0.

This in turn implies that the gravitino Killing spinor equation also has even number

of solutions [1]. Therefore to prove our result, we should exclude the existence of IIB

backgrounds with 30 supersymmetries. For this we explore the integrability conditions

of the gravitino Killing spinor equation. The analysis is similar in spirit as that for the

N = 31 backgrounds of eleven-dimensional supergravity [3]. In particular, we show that

the curvature R of the supercovariant connection vanishes, R = 0, subject to the Bianchi

identities and field equations of IIB supergravity. This demonstrates that N > 28 IIB

backgrounds are locally maximally supersymmetric. Using the classification of maximally

supersymmetric IIB backgrounds [12], one concludes that the N > 28 backgrounds must be

locally isometric to one of the following solutions: Minkowski space R
9,1, the Freund-Rubin

space AdS5 × S5 [13] and the maximally supersymmetric plane wave [14].

Finally, we show that one cannot construct 28 < N < 32 IIB backgrounds as discrete

quotients of the maximally supersymmetric ones. To establish our result, we lift the gen-

erators of the discrete symmetry group to Spinc(9, 1) = Spin(9, 1) ×Z2
U(1) and prove

that there are no invariant spinors that span a 30-dimensional subspace. This computation

relies on the lift of the generators of the discrete group to the Spin(9, 1) group investigated

in [7, 8]. Our lift has an additional phase along the U(1) direction of Spinc(9, 1). Our final

result is in agreement with a conjecture in [15] which was formulated using the assumption

that the Killing spinors transform under certain representations of subgroups of Spin(9, 1)c.
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This paper is organized as follows. In section two, we show using the algebraic Killing

spinor equation that for N > 28 supersymmetric IIB backgrounds the three-form field

strength vanishes, G = 0. In section three, we describe the conditions that the field

equations and the Bianchi identities impose on the holonomy of the supercovariant IIB

connection. In sections four, five and six, we demonstrate that the supercovariant curvature

of all N > 28 IIB backgrounds vanishes. In section seven, we exclude the possibility of

constructing 28 < N < 32 backgrounds as discrete quotients of Minkowski space R
9,1,

AdS5×S5 and the maximally supersymmetric plane wave, and in section eight we give our

conclusions.

2. Algebraic Killing spinor equation

The algebraic Killing spinor equation (KSE) of IIB supergravity [16, 13, 17] is

PAΓACǫ∗ +
1

24
GABCΓABCǫ = 0 , (2.1)

where P and G are the (complex) one- and three-form field strengths, respectively, C

is the charge conjugation matrix, and ǫ is a complex Weyl Spinc(9, 1) spinor. For our

spinor conventions, see e.g. [18]. It is known that IIB backgrounds with more than 24

supersymmetries are locally homogeneous [11]. In particular, this implies that the scalars

are constant and hence that their field strength vanishes, P = 0. The vanishing of P has

the important implication that the dilatino KSE becomes linear over the complex numbers.

In other words, it has an even number of solutions which can be expressed as (ǫr, iǫr) pairs.

The aim is to show that the algebraic Killing spinor equation for N > 28 backgrounds

implies G = 0. It is known that if N = 32, the algebraic Killing spinor equation implies

that P = G = 0 [12]. So it remains to prove the statement for N = 30. Since the algebraic

Killing spinor equation for P = 0 is linear over the complex numbers, the solution spans a

complex hyperplane in the space of spinors at every spacetime point. So it has a normal

ν with respect to the standard Majorana inner product. Using spinorial geometry and in

particular the gauge symmetry of the Killing spinor equations, the normal direction ν can

be chosen of the form [1]

Spin(7) ⋉ R
8 : ν = (n + im)(e5 + e12345) ,

SU(4) ⋉ R
8 : ν = (n − ℓ + im)e5 + (n + ℓ + im)e12345 ,

G2 : ν = n(e5 + e12345) + im(e1 + e234) , (2.2)

corresponding to the three different orbits of Spin(9, 1) in the space of negative chirality

Weyl spinors [18], where n,m and ℓ are real spacetime functions. Choosing the solutions

orthogonal to the above normals, they can be expressed as

ǫr =
15
∑

s=1

zr
sη

s , (2.3)

where ηi is a basis normal to ν and z is an invertible 15×15 matrix of spacetime dependent

complex functions, see [19] for more details. Consequently, the Killing spinor equation
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becomes

GABCΓABCηr = 0 . (2.4)

Since in all three cases the normal ν can be arranged to point only in at most three

different directions e5 + e12345, i(e5 − e12345) and (e1 + e234), the bases (ηs) can be chosen

such that they contain 13 common elements. The other two elements depend on the choice

of orbit and have to be considered case by case. We will first analyze the constraints

obtained from (2.4) acting on the 13 common elements, and afterwards specialize to the

three different cases.

The 13 common basis elements ηr, r = 1, . . . , 13, are given by those of the 16 basis

elements of the Majorana-Weyl representation of Spin(9, 1) which are linearly independent

from 1 + e1234, i(1 − e1234) and (e15 + e2345). Substituting this into the algebraic Killing

spinor equation (2.4), we find that the non-vanishing components of G satisfy

Gm1̄m̄ = −1

2
G2̄3̄4̄ , G−+1̄ =

1

2
G2̄3̄4̄ , G+11̄ = G+mm̄ ,

G1mm̄ = −1

2
G234 , G−+1 =

1

2
G234 , (2.5)

where m = 2, 3, 4, and there is no summation in the repeated m indices. Hence there are

only three independent non-vanishing components left of the original 120.

Now the analysis splits up for the three different orbits, since the two additional basis

elements ηr, r = 14, 15, differ:

• The simplest orbit is Spin(7) ⋉ R
8, in which case the two additional basis elements

are η14 = 1 − e1234 and η15 = e15 + e2345. When inserted into the dilatino variation,

the former implies G+11̄ = 0 and the latter implies G234 = G2̄3̄4̄ = 0. Hence G = 0

in this case.

• In the SU(4) ⋉ R
8 case, one has η14 = e15 + e2345. This leads to G234 = G2̄3̄4̄ = 0.

The remaining basis element is given by η15 = (n− ℓ + im)1− (n + ℓ + im)e1234 and

implies G+11̄ = 0. Hence G also vanishes for the SU(4) ⋉ R
8 orbit.

• The remaining case is the G2 orbit. For this, η14 = 1 − e1234, which leads to the

vanishing of G+11̄. The other two components of G are set to zero by η15 = m(1 +

e1234) + in(e15 + e2345). Hence G = 0 for this orbit as well.

Therefore we conclude that for N > 28 IIB backgrounds, P = G = 0 as a consequence

of the homogeneity and the algebraic Killing spinor equation. As we have mentioned, if

G = 0, the gravitino Killing spinor equation has an even number of solutions. Thus N > 28

IIB backgrounds can have either 30 or 32 supersymmetries. We shall exclude the existence

of N = 30 backgrounds by investigating the gravitino Killing spinor equation.
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3. Supercovariant curvature and holonomy

3.1 Supercurvature

Assuming G = 0, the curvature R = [D,D] of the covariant connection D of IIB super-

gravity can be expanded [12] as

RMN = ReRMN + iImRMN =
1

2
(T 2

MN )PQΓPQ +
1

4!
(T̂ 4

MN + iT̃ 4
MN )Q1...Q4

ΓQ1...Q4 , (3.1)

where

(T 2
MN )P1P2

=
1

4
RMN,P1P2

− 1

12
FM [P1

Q1Q2Q3F|N |P2]Q1Q2Q3
,

(T 4
MN )P1...P4

=
i

2
D[MFN ]P1...P4

+
1

2
FMNQ1Q2[P1

FP2P3P4]
Q1Q2 , (3.2)

and R is the Riemann curvature, F is the self-dual five-form field strength and T 4 =

T̂ 4 + iT̃ 4. Observe that T̃ 4 contains only the covariant derivative of F . We have made use

of the self-duality of F to simplify these expressions. The components of T 2 and T 4 are

not all independent but are restricted by the Bianchi identities of R and F , (dF = 0), and

the field equations of IIB supergravity. In particular, using the expressions of T 2 and T 4

in terms of the physical fields (3.2) and the Bianchi identities, one finds that

(T 2
MN )P1P2

= (T 2
P1P2

)MN ,

(T 2
M [P1

)P2P3] = 0 ,

(T 4
[P1P2

)P3P4P5P6] = 0 . (3.3)

Next observe that ΓNRMN is a linear combination of the field equations [19]. Making use

of this and of (3.3), we find

(T 2
MN )P

N = 0 ,

(T 4
MN )P1P2P3

N = 0 ,

(T 4
M [P1

)P2P3P4P5] = − 1

5!
ǫP1P2P3P4P5

Q1Q2Q3Q4Q5(T 4
M [Q1

)Q2Q3Q4Q5] . (3.4)

Also note that (T 4
P1(M )N)P2P3P4

is totally antisymmetric in P1, P2, P3, P4.

One of the consequences of the first condition in (3.4), or equivalently from the Einstein

field equation and P = G = 0, is that the scalar curvature of the spacetime vanishes,

i.e. R = 0. Furthermore, on imposing the Einstein equations, and using the self-duality

of F , it is straightforward to show that (T 2
MN )PQ = 1

4WMNPQ, where W is the spacetime

Weyl tensor. The expressions in this subsection do not rely on the existence of Killing

spinors and are therefore valid for all backgrounds.

3.2 Holonomy

It is clear from the expression for R in the previous section that the (reduced) holonomy

of the supercovariant connection of IIB backgrounds with P = G = 0 is contained in

SL(16, C). This is a subgroup of SL(32, R) which is the holonomy of the supercovariant
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connection for generic IIB backgrounds [20]. It immediately follows from the integrability

conditions of the gravitino Killing spinor equation and in particular of

Rǫr = 0 (3.5)

that the holonomy of a spacetime with N = 2n supersymmetries reduces to a subgroup

of SL(16 − n, C) ⋉ ⊕nC
16−n. Therefore on the grounds of holonomy, one expects that

there are supersymmetric P = G = 0 backgrounds with any even number N ≤ 32 of

supersymmetries. However as we shall show the N = 30 case will be excluded.

Let (ǫr, ǫ̃p) be a complex (local) basis in the space of spinors where ǫr, r = 1, . . . , n

is a basis in the space of Killing spinors, N = 2n, and p = n + 1, . . . , 16. Moreover, let

νq, q = 1, . . . 16 − n, be a basis in the space normal to the Killing spinors with respect to

the Majorana inner product B. Using a similar argument to the one we have employed for

M-theory [3], the supercurvature of a spacetime with N = 2n Killing spinors can be locally

written as

RMN,ab′ = UMN,rqǫ
r
aν

q
b′ + UMN,pq ǫ̃

p
aν

q
b′ , (3.6)

where a, b′ are chiral and anti-chiral spinorial indices, respectively, and UMN,rq and UMN,pq

are complex spacetime two-forms. Clearly, in writing the supercovariant curvature in this

way it automatically satisfies the integrability condition (3.5). Moreover, the above condi-

tion can be written in any other basis in the space of spinors. In particular, we may choose

say a Majorana or another suitable basis ηr and write

RMN,ab′ = uMN,rqη
r
aν

q
b′ , (3.7)

where again u are complex two-forms on the spacetime. On the other hand we know that

ηaθb′ = − 1

16

2
∑

k=0

1

(2k)!
B(η,ΓA1A2...A2k

θ)(ΓA1A2...A2k)ab′ , (3.8)

This in turn gives

RMN,A1...A2k
= − 1

16
uMN,rqB(ηr,ΓA1A2...A2k

νq) . (3.9)

The complex spacetime two-forms u are not all independent. One condition arises from

the requirement that the holonomy of the supercovariant connection for all backgrounds is

a subgroup of SL(16, C). This in particular gives

uMN,rqB(ηr, νq) = 0 . (3.10)

Taking this into account, the number of independent two forms u for N = 2n supersym-

metric backgrounds is equal to the dimension of SL(16− n, C) ⋉ ⊕nC
16−n as expected. In

the cases we shall investigate below, the basis ηr is chosen in such a way that (3.10) is

automatically satisfied.
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Apart from (3.10), there are additional conditions on the two-forms u. In particular

those that arise from the Bianchi identities and field equations of IIB supergravity de-

scribed in the previous section. These can potentially further reduce the holonomy of the

supercovariant connection to a proper subgroup of SL(16 − n, C) ⋉ ⊕nC
16−n .

In the special case for which N = 30, and so n = 15, that we are interested in, there

is a unique (complex) normal direction ν to the Killing spinors. The holonomy of the

supercovariant connection is contained in C
15. Taking into account the condition (3.10),

the supercovariant curvature is determined in terms of 15 complex spacetime two-forms u,

as expected. Furthermore, we shall show that all these 15 two-forms vanish subject to the

Bianchi identities and field equations of IIB supergravity. As a result R = 0 and N = 30

IIB supergravity backgrounds are locally maximally supersymmetric. There are three cases

to consider depending on the orbit type of the normal to the Killing spinors.

4. Spin(7)-invariant normal

The normal direction can be chosen as ν = e5 + e12345. A suitable basis such that (3.10) is

automatically satisfied is

ηᾱβ̄ = eαβ , ηᾱ = eα5 ,

ηα =
1

6
ǫαβ1β2β3eβ1β2β35 , η+ = 1 − e1234 , (4.1)

where α, β = 1, 2, 3, 4. By considering the relation

(T 2)P1P2
= − 1

16
urB(ηr,ΓP1P2

ν) , (4.2)

where the form indices MN have been suppressed in (T 2) and in ur, we find the relations

(T 2)+− = (T 2)−µ = (T 2)−µ̄ = 0 , (T 2)+µ = −1

8
uµ , (T 2)+µ̄ = −1

8
uµ̄ ,

(T 2)µν = − 1

16
ǫµν

β̄1β̄2uβ̄1β̄2
, (T 2)µν̄ =

1

8
u+δµν̄ , (T 2)µ̄ν̄ =

1

8
uµ̄ν̄ . (4.3)

Note that uMN,r are complex valued. To proceed, observe that

u+ = 2(T 2)α
α (4.4)

and hence, making use of the constraint (T 2
MN )P1P2

= (T 2
P1P2

)MN , we find that

(T 2
αβ̄

)µν̄ =
1

16
(T 2

ρ
ρ)λ

λδαβ̄δµν̄ . (4.5)

Next note that (making use of (T 2)−µ = 0)

0 = (T 2
Nβ̄)µ

N = (T 2
σβ̄)µ

σ + (T 2
σ̄β̄)µ

σ̄ . (4.6)

However,

(T 2
σ̄β̄)µ

σ̄ = − 1

16
ǫµ

β̄1β̄2β̄3uβ̄1β̄,β̄2β̄3
= −1

2
ǫµ

β̄1β̄2β̄3(T 2
β̄1β̄)β̄2β̄3

= 0 (4.7)
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by the Bianchi identity. Hence, it follows that (T 2
σβ̄)µ

σ = 0, which implies that (T 2
ρ
ρ)λ

λ =

0. Hence

(T 2
αβ̄)µν̄ = 0 (4.8)

so

uαβ̄,+ = 0 . (4.9)

Similarly, we also have

(T 2
+α)µν̄ =

1

8
u+α,+δµν̄ (4.10)

and hence u+α,+ = 2(T 2
+α)λ

λ, so

(T 2
+α)µν̄ =

1

4
(T 2

+α)λ
λδµν̄ . (4.11)

Next, note that

0 = (T 2
N+)µ

N = (T 2
σ+)µ

σ + (T 2
σ̄+)µ

σ̄ , (4.12)

where we have made use of (T 2)+− = 0. However, (T 2
σ̄+)µ

σ̄ = 0 from the Bianchi identity,

hence (T 2
σ+)µ

σ = 0 also. This implies that (T 2
+α)λ

λ = 0, so (T 2
+α)µν̄ = 0. Therefore

u+α,+ = 0. Also, (T 2
+α)µν̄ = 0 implies that (T 2

+ᾱ)µν̄ = 0 (as T 2 is real), hence it follows

that u+ᾱ,+ = 0.

The vanishing of (T 2
µν̄)−α, (T 2

µν̄)−ᾱ, and (T 2
µν̄)+− also implies that u−α,+ = 0,

u−ᾱ,+ = 0 and u+−,+ = 0. Next, consider

(T 2
αβ)µν̄ =

1

8
uαβ,+δµν̄ . (4.13)

Contracting with ǫαβµ
λ̄ and using the Bianchi identity we find uαβ,+ = 0, so (T 2

αβ)µν̄ = 0.

As T 2 is real, this implies that (T 2
ᾱβ̄)µν̄ = 0, which then fixes uᾱβ̄,+ = 0. So all components

of u+ vanish.

Next, recall that (T 2)+µ = −1
8uµ. Then the vanishing of (T 2

+µ)αβ̄ , (T 2
+µ)−α,

(T 2
+µ)−ᾱ and (T 2

+µ)−+ implies that

uαβ̄,µ = 0, u−α,µ = 0, u−ᾱ,µ = 0, u−+,µ = 0 . (4.14)

Next note that

(T 2
αβ)+µ = (T 2

+µ)αβ = −1

2
ǫαβ

ρ̄σ̄(T 2
+µ)ρ̄σ̄ . (4.15)

However, we also have (T 2
+[µ)ρ̄σ̄] = 0. Together with (T 2)µσ̄ = 0 this implies that

(T 2
+µ)ρ̄σ̄ = 0 and hence (T 2

αβ)+µ = 0 also. Hence uαβ,µ = 0. Furthermore, (T 2
ρ̄σ̄)+µ = 0

implies that uᾱβ̄,µ = 0 as well.

Next consider (T 2)+µ̄ = −1
8uµ̄. The vanishing of (T 2

+µ̄)αβ̄ , (T 2
+µ̄)−α, (T 2

+µ̄)−ᾱ,

(T 2
+µ̄)−+, (T 2

+µ̄)αβ and (T 2
ᾱβ̄)+µ̄ implies that

uαβ̄,µ̄ = 0, u−α,µ̄ = 0, u−ᾱ,µ̄ = 0, u−+,µ̄ = 0, uαβ,µ̄ = 0, uᾱβ̄,µ̄ = 0 . (4.16)

– 8 –
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Next consider the constraint (T 2)µ̄ν̄ = 1
8uµ̄ν̄ . As

(T 2
αβ̄)µ̄ν̄ = (T 2

µ̄ν̄)αβ̄ = 0 , (4.17)

it follows that uαβ̄,µ̄ν̄ = 0. Similarly, the vanishing of (T 2
µ̄ν̄)−α, (T 2

µ̄ν̄)−ᾱ , (T 2
µ̄ν̄)+−,

(T 2
µ̄ν̄)+α and (T 2

µ̄ν̄)+ᾱ implies that

u−α,µ̄ν̄ = 0, u−ᾱ,µ̄ν̄ = 0, u+−,µ̄ν̄ = 0, u+α,µ̄ν̄ = 0, u+ᾱ,µ̄ν̄ = 0 . (4.18)

Next consider the Bianchi identity

(T 2
α[β)µ̄ν̄] = 0 . (4.19)

As u+ = 0, it follows that (T 2
αν̄)βν̄ = 0, and hence (T 2

αβ)µ̄ν̄ = 0. Therefore uαβ,µ̄ν̄ = 0.

Also

(T 2
ᾱβ̄

)µ̄ν̄ = −1

2
ǫµ̄ν̄

λ1λ2(T 2
ᾱβ̄)λ1λ2

= 0 , (4.20)

so uᾱβ̄,µ̄ν̄ = 0. Hence all components of uµ̄ν̄ vanish.

To summarize, these constraints fix all components of ur to vanish, with the exception

of u+A,B where A,B are su(4) indices. As

(T 2
+A)+B = −1

8
u+A,B , (4.21)

it follows that u+A,B is symmetric in A,B.

Next consider the 4-forms. It turns out that all components of T 4 are forced to vanish

by the above constraints with the exception of

(T 4)+µνρ = −1

4
uᾱǫᾱ

µνρ , (T 4)+µνρ̄ =
1

8
uµδνρ̄ −

1

8
uνδµρ̄ ,

(T 4)+µν̄ρ̄ = −1

8
δµν̄uρ̄ +

1

8
δµρ̄uν̄ , (T 4)+µ̄ν̄ρ̄ = −1

4
uαǫα

µ̄ν̄ρ̄ . (4.22)

Using (4.21), this implies that

(T 4)+µνρ = 2(T 2)+ᾱǫᾱ
µνρ , (T 4)+µνρ̄ = (T 2)+νδµρ̄ − (T 2)+µδνρ̄ ,

(T 4)+µ̄ν̄ρ = (T 2)+ν̄δµ̄ρ − (T 2)+µ̄δν̄ρ , (T 4)+µ̄ν̄ρ̄ = 2(T 2)+αǫα
µ̄ν̄ρ̄ . (4.23)

This implies that T 4 is entirely real, so that F is covariantly constant. Furthermore,

(T 4
+A1

)+A2A3A4
is totally antisymmetric in A1, A2, A3, A4. Recall that (T 4

M [P1
)P2P3P4P5]

is self-dual in the five anti-symmetrized indices. Hence (T 4
+α1

)+α2α3α4
must vanish. Then

(4.23) implies that (T 2
+α)+β̄ = 0.

Also consider

(T 4
+α)+µνρ̄ = δµρ̄(T

2
+α)+ν − δνρ(T

2
+α)+µ . (4.24)

Contracting this identity gives

(T 4
+α)+µλ

λ = −3(T 2
+α)+µ . (4.25)

However, the self-duality condition implies that (T 4
+α)+µλ

λ = 0, and hence (T 2
+α)+β = 0

also. Therefore, all components of T 2 and T 4 are constrained to vanish.
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5. SU(4) ⋉ R
8-invariant normal

The normal spinor direction is taken to be

ν = (n − ℓ + im)e5 + (n + ℓ + im)e12345 , (5.1)

and a basis in the space of Killing spinors such that (3.10) is satisfied is

ηᾱβ̄ = eαβ , ηᾱ = eα5 ,

ηα =
1

6
ǫαβ1β2β3eβ1β2β35 , η+ = (n − ℓ + im)1 − (n + ℓ + im)e1234 . (5.2)

T 2 is constrained by

(T 2)+− = (T 2)−µ = (T 2)−µ̄ = 0 ,

(T 2)+µ = −1

8
(n − ℓ + im)uµ , (T 2)+µ̄ = −1

8
(n + ℓ + im)uµ̄ ,

(T 2)µν = − 1

16
(n − ℓ + im)ǫµν

β̄1β̄2uβ̄1β̄2
, (T 2)µν̄ =

1

8

(

(n + im)2 − ℓ2
)

u+δµν̄ ,

(T 2)µ̄ν̄ =
1

8
(n + ℓ + im)uµ̄ν̄ . (5.3)

The analysis proceeds depending on whether or not (n + im)2 − ℓ2 vanishes. There are

three cases but two of them are related by a Spin(9, 1) transformation. So there are two

independent cases to consider.

5.1 Generic solutions ((n + im)2 − ℓ2 6= 0)

In this case there are no restrictions on the spacetime functions n,m and ℓ. It is then

straightforward to see, using the same reasoning as in the Spin(7) ⋉ R
8 analysis, that all

components of ur vanish except for u+A,B, where A = (α, ᾱ), B = (β, β̄), and

(T 2
+α)+β = −1

8
(n − ℓ + im)u+α,β , (T 2

+α)+β̄ = −1

8
(n + ℓ + im)u+α,β̄ ,

(T 2
+ᾱ)+β = −1

8
(n − ℓ + im)u+ᾱ,β , (T 2

+ᾱ)+β̄ = −1

8
(n + ℓ + im)u+ᾱ,β̄ . (5.4)

Similarly, it turns out that all components of T 4 are forced to vanish by the above con-

straints with the exception of

(T 4)+µνρ = −1

4
(n − ℓ + im)uᾱǫᾱ

µνρ ,

(T 4)+µνρ̄ =
1

8
(n − ℓ + im)

(

uµδνρ̄ − uνδµρ̄

)

,

(T 4)+µν̄ρ̄ =
1

8
(n + ℓ + im)

(

δµρ̄uν̄ − δµν̄uρ̄

)

,

(T 4)+µ̄ν̄ρ̄ = −1

4
(n + ℓ + im)uαǫα

µ̄ν̄ρ̄ . (5.5)

As (T 4
+A1

)+A2A3A4
is totally antisymmetric in Ai, self-duality implies that

(T 4
+α)+βρσ = 0, and hence u+α,β̄ = 0. Therefore (T 2

+α)+β̄ = 0, and hence (T 2
+ᾱ)+β = 0

also implies u+ᾱ,β = 0.
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Furthermore, we also have

(T 4
+µ)+αβ

β =
3

8
(n − ℓ + im)u+µ,α . (5.6)

As the left-hand side of this expression must vanish by self-duality, we find u+α,β = 0.

Hence (T 2
+α)+β = 0, and so (T 2

+ᾱ)+β̄ = 0 also implies that u+ᾱ,β̄ = 0. Therefore all

components of the ur vanish, so all components of T 2 and T 4 are constrained to vanish as

well.

5.2 Pure spinor solution ((n + im)2 − ℓ2 = 0)

There are two pure spinor cases that one can consider depending on whether m = 0,

n = ℓ 6= 0 or m = 0, n = −ℓ 6= 0. The normal directions are either ν = e1234 or

ν = 1, respectively. However, these two normals are related by a Spin(9, 1) transformation.

So it suffices to consider one of the two cases as the other will follow by virtue of the

Spin(9, 1) gauge symmetry of the Killing spinor equations. So let us investigate the case

m = 0, n = ℓ. Then (5.3) implies that (T 2)+α = 0. Therefore, (T 2)+ᾱ = 0, so uᾱ = 0.

Furthermore, (T 2)αβ = 0, so (T 2)ᾱβ̄ = 0 also, and therefore uᾱβ̄ = 0. These constraints

are sufficient to fix T 2 = 0, however u+ and uα are not fixed by constraints involving T 2.

It is straightforward to see that the only non-vanishing components of T 4 are given by

(T 4)+ᾱβ̄λ̄ =
n

2
ǫᾱβ̄λ̄

ρuρ , (T 4)ᾱβ̄λ̄σ̄ = −n2u+ǫᾱβ̄λ̄σ̄ . (5.7)

To proceed, note that the self-duality constraint fixes (T 4
+σ̄)+ᾱβ̄λ̄ = 0, so u+β̄,α = 0.

Also, (T 4
+σ)+ᾱβ̄λ̄ = −(T 4

+ᾱ)+σβ̄λ̄ = 0, so u+β,α = 0. Furthermore (T 4
[µν)ᾱβ̄λ̄σ̄] = 0

which implies (T 4
µν)ᾱβ̄λ̄σ̄ = 0 and hence uµν,+ = 0. Also, (T 4

[−ν)ᾱβ̄λ̄σ̄] = 0 implies

(T 4
−ν)ᾱβ̄λ̄σ̄ = 0, so u−α,+ = 0.

Next, consider the following relation implied by self-duality:

(T 4
+[ν)ᾱβ̄λ̄σ̄] = −1

6
ǫᾱβ̄λ̄σ̄ǫν

λ̄1λ̄2λ̄3(T 4
+[−)+λ̄1λ̄2λ̄3] . (5.8)

This implies that

nu+α,+ = −1

2
u+−,α . (5.9)

However, (T 4
+−)+λ̄1λ̄2λ̄3

= −(T 4
+λ̄1

)+−λ̄2λ̄3
= 0, which implies that u+−,α = 0, so u+α,+ =

0 as well. Also, (T 4
[−ρ)+ᾱβ̄λ̄] = 0, which implies (T 4

−ρ)+ᾱβ̄λ̄ = 0 and so u−α,β = 0.

Also note that (T 4
−(ᾱ)β̄)ρ̄σ̄λ̄ = −(T 4

ρ̄(ᾱ)β̄)−σ̄λ̄ = 0, so

u−ᾱ,+ǫβ̄ρ̄σ̄λ̄ + u−β̄,+ǫᾱρ̄σ̄λ̄ = 0 . (5.10)

Contracting this expression with ǫβ̄ρ̄σ̄λ̄ yields u−ᾱ,+ = 0.

Next consider (T 4
−(+)ᾱ)β̄λ̄σ̄ = −(T 4

β̄(+)ᾱ)−λ̄σ̄ = 0. This implies that

n2u−+,+ǫᾱβ̄λ̄σ̄ − n

2
u−ᾱ,ρǫβ̄λ̄σ̄

ρ = 0 (5.11)
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and on contracting with ǫβ̄λ̄σ̄
µ, we find

u−ᾱ,µ = −2nδᾱµu−+,+ . (5.12)

However, self-duality implies that (T 4
−[+)ᾱβ̄λ̄σ̄] = 0, which when combined with (5.12) is

sufficient to constrain u−+,+ = 0 and hence u−ᾱ,µ = 0 as well.

Next, note that (T 4
µ(ν̄)ᾱ)β̄λ̄ρ̄ = −(T 4

β̄(ν̄)ᾱ)µλ̄ρ̄ = 0, hence

uµν̄,+ǫᾱβ̄λ̄ρ̄ + uµᾱ,+ǫν̄β̄λ̄ρ̄ = 0 . (5.13)

On contracting this identity with ǫᾱβ̄λ̄ρ̄ we find uµν̄,+ = 0.

The constraint (T 4
+(µ̄)ᾱ)β̄λ̄σ̄ = −(T 4

β̄(µ̄)ᾱ)+λ̄σ̄ implies, on contracting with ǫᾱβ̄λ̄σ̄, that

6nu+µ̄,+ = −δρβ̄uβ̄µ̄,ρ (5.14)

and furthermore the self-duality constraint (T 4
µ̄[+)ᾱβ̄λ̄σ̄] = 0 implies, on contracting with

ǫᾱβ̄λ̄σ̄, that

24n2u+µ̄,+ − 12nδρβ̄uβ̄µ̄,ρ = 0 . (5.15)

This constraint, together with (5.14) implies that u+,µ̄,+ = 0 and δρβ̄uβ̄µ̄,ρ = 0. Next note

that (T 4
µ̄(ν̄)ᾱ)β̄ρ̄σ̄ = −(T 4

β̄(ν̄)ᾱ)µ̄ρ̄σ̄. Contracting this constraint with ǫᾱβ̄ρ̄σ̄ gives uµ̄ν̄,+ = 0.

Combining all of these constraints fixes all components of u+ to vanish. To fix the

remaining components of uα, note that (T 4
µ̄(ν̄)+)ᾱβ̄λ̄ = −(T 4

ᾱ(ν̄)+)µ̄β̄λ̄ implies that

ǫᾱβ̄λ̄
ρuµ̄ν̄,ρ = −ǫµ̄β̄λ̄

ρuᾱν̄,ρ (5.16)

and on contracting this expression with ǫᾱβ̄λ̄
σ and using the constraint δρβ̄uβ̄µ̄,ρ = 0 which

we have already obtained, we find uµ̄ν̄,σ = 0.

Next, note that the constraint (T 4
µ(ν̄)+)ᾱβ̄λ̄ = −(T 4

ᾱ(ν̄)+)µβ̄λ̄ = 0 together with u+ = 0

implies that (T 4
µν̄)+ᾱβ̄λ̄ = 0, so uµν̄,ρ = 0. Finally, (T 4

µ(ν)+)ᾱβ̄λ̄ = −(T 4
ᾱ(ν)+)µβ̄λ̄ = 0

together with u+ = 0 imply that (T 4
µν)+ᾱβ̄λ̄ = 0, so uµν,ρ = 0.

These constraints are then sufficient to fix uα = 0, and hence all components of ur

vanish, as do T 2 and T 4.

6. G2-invariant normal

The normal spinor can be chosen as

ν = n(e5 + e12345) + im(e1 + e234) . (6.1)

By using a gauge transformation of the form efΓ+− for real f , we can without loss of

generality set m = ±n, and so we take the normal spinor direction as

ν = e5 + e12345 ± i(e1 + e234) . (6.2)
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A basis of spinors compatible with (3.10) is

η− = e15 + e2345 ∓ i(1 + e1234) , η+ = 1 − e1234 ,

η1 = e15 − e2345 , η1p̄ = e1p , η1p =
1

2
ǫpqreqr ,

ηp̄ = ep5 , ηp =
1

2
ǫpqreqr ∧ e15 , (6.3)

where p, q, r = 1, 2, 3. We then find the following constraints on T 2:

(T 2)+− = ± i

4
u− , (T 2)+1 = −1

8
(u− − u1) , (T 2)+1̄ = −1

8
(u− + u1) ,

(T 2)+p =
1

8
up , (T 2)+p̄ = −1

8
up̄ ,

(T 2)−1 = −1

8
(−u− ∓ iu+) , (T 2)−1̄ = −1

8
(−u− ± iu+) , (T 2)−p = ± i

8
u1p ,

(T 2)−p̄ = ∓ i

8
u1p̄ ,

(T 2)11̄ = −1

8
(±iu1 − u+) , (T 2)1p = −1

8
u1p , (T 2)1p̄ = ∓ i

8
up̄ ,

(T 2)1̄p = ± i

8
up , (T 2)1̄p̄ =

1

8
u1p̄ ,

(T 2)pq = −1

8
ǫpq

r̄(u1r̄ ± iur̄) , (T 2)pq̄ = −1

8
δpq̄(−u+ ∓ iu1) ,

(T 2)p̄q̄ = −1

8
ǫp̄q̄

r(−u1r ∓ iur) . (6.4)

These constraints imply that

u− = ∓4i(T 2)+− , u1 = −4((T 2)+1̄ − (T 2)+1) , up = 8(T 2)+p ,

up̄ = −8(T 2)+p̄ , u+ = ±4i((T 2)−1̄ − (T 2)−1) , u1p = −8(T 2)1p ,

u1p̄ = 8(T 2)1̄p̄ . (6.5)

Substituting (6.5) back into (6.4) gives the constraints

(T 2)+1+(T 2)+1̄ = ±i(T 2)+− , (T 2)−1+(T 2)−1̄ = ∓i(T 2)+− ,

(T 2)−p = ∓i(T 2)1p , (T 2)−p̄ = ∓i(T 2)1̄p̄ ,

(T 2)11̄ = ± i

2

(

(T 2)+1̄−(T 2)+1+(T 2)−1̄−(T 2)−1

)

,

(T 2)1p̄ = ±i(T 2)+p̄ , (T 2)1̄p = ±i(T 2)+p ,

(T 2)pq = ǫpq
r̄(−(T 2)1̄r̄ ± i(T 2)+r̄) ,

(T 2)pq̄ = ± i

2
δpq̄

(

(T 2)−1̄−(T 2)−1−(T 2)+1̄+(T 2)+1

)

,

(T 2)p̄q̄ = ǫp̄q̄
r(−(T 2)1r ± i(T 2)+r) . (6.6)
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These constraints can be rewritten in terms of irreducible G2 representations1 as

(T 2)+1 = ± i√
2
(T 2)+− , (T 2)−1 = ∓ i√

2
(T 2)+− ,

(T 2)1i = ± i√
2
((T 2)+i + (T 2)−i) ,

(Π7T 2)i := ϕi
jk(T 2)jk = ±3

√
2i((T 2)+i − (T 2)−i) ,

(Π14T 2)ij :=
2

3

(

1

4
⋆ ϕij

kl(T 2)kl + (T 2)ij

)

= 0 , (6.7)

where the underlined 1 denotes a real index. By taking the complex conjugate of these

expressions, and using the fact that T 2
MN is real, one immediately finds that all components

of T 2
MN are put to zero. This implies, through (6.5), that all components of ur vanish.

Note that throughout this reasoning, in contrast to the analysis of the Spin(7) ⋉ R
8

and SU(4) ⋉ R
8 cases, we have not made use of the algebraic constraints on T 2 given in

(3.3) and (3.4); only the fact that T 2 is real has been used.

To summarize, we have shown that all components of the ur vanish, so all components

of T 2 and T 4 also vanish. This yields R = 0 in this case as well. We therefore conclude that

for the N > 28 IIB backgrounds R = 0 and they are thus locally isometric to maximally

supersymmetric backgrounds.

7. Discrete quotients

We have shown that all N > 28 supersymmetric IIB backgrounds are locally maximally

supersymmetric. So it remains to exclude the possibility that 28 < N < 32 backgrounds can

be constructed by discrete quotients of maximally supersymmetric ones. The maximally

supersymmetric backgrounds of IIB supergravity have been classified [12]. It has been

found that they are locally isometric to Minkowski space R
9,1, AdS5 × S5 [13] and the

maximally supersymmetric plane wave [14]. Considering the simply connected maximally

supersymmetric backgrounds, which we collectively denote as M̃ , one chooses a discrete

subgroup D of their symmetry group S, and constructs new solutions by taking the quotient

of M̃ with D, M̃/D. Such backgrounds are solutions of the field equations and depending

on the choice of D typically preserve less supersymmetry than M̃ . So the task is to find

whether there are subgroups D such that M̃/D preserves 28 < N < 32 supersymmetries.

The linearity of the Killing spinor equations of IIB supergravity for backgrounds with P =

G = 0 over the complex numbers excludes the possibility of M̃/D preserving an odd number

of supersymmetries. So to prove that there are no new supersymmetric backgrounds with

N > 28, we have to show that there are no N = 30 quotients of maximally supersymmetric

backgrounds.

The task of proving that there are no subgroups D ⊂ S of the symmetry group of

simply connected maximally supersymmetric IIB backgrounds M̃ for which M̃/D preserves

30 supersymmetries is simplified in two ways. First it has been shown in [4] that, without

1This can be seen as a consistency check of the calculation.
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loss of generality, one can consider only cyclic subgroups D as the remaining possibilities

can be reduced to this case. In addition, it suffices to take the generator α of the cyclic

group, D =< α >, to lie in the image of the exponential map of S. Therefore α = eX ,

where X is an element of the Lie algebra of S. Since D is specified up to a conjugation in

S, it suffices to consider the normal forms of X up to the action of the adjoint map of S.

This is a straightforward task for compact groups but for non-compact ones, like S, there

are several possibilities as has been emphasized in [7].

One continues the computation by considering the lift α̂ of the generator α to the spin

bundle and by computing the number of invariant Killing spinors under the action of α̂.

The number of invariant Killing spinors is the number of supersymmetries preserved by

M̃/D.

One difference that arises in the IIB case, in comparison with the cases investigated

in [7, 8], is that the group action should be lifted to a Spinc(9, 1) = Spin(9, 1) ×Z2
U(1)

rather than a Spin(9, 1) bundle. This is equivalent to allowing an additional phase in the

lift α̂ of the generator α of D along the U(1) direction. This additional phase is similar

to that which appears in the context of supersymmetric backgrounds in three-dimensional

supergravities as the holonomy of a flat U(1) connection [21]. It is known that the inclusion

of the U(1) phase changes the number of supersymmetries preserved by a background. Such

backgrounds are the stringy cosmic strings [22], the D7-branes [23] and the conical purely

gravitational domain walls of [24].

7.1 Discrete quotients of R
9,1

Let us begin with the flat space case. The translations do not reduce supersymmetry so

they are not appropriate for the construction of N < 32 backgrounds. On the other hand

discrete quotients with elements of the isometry group SO(9, 1) of R
9,1 do not preserve all

supersymmetry. So consider the generator α = exp X, X ∈ so(9, 1), of the cyclic group.

Then up to a conjugation, one has that either

X = −θ0e
0 ∧ e5 + θ1e

1 ∧ e6 + θ2e
2 ∧ e7 + θ3e

3 ∧ e8 + θ4e
4 ∧ e9 , (7.1)

or

X = −(e0 − e5) ∧ e9 + θ1e
1 ∧ e6 + θ2e

2 ∧ e7 + θ3e
3 ∧ e8 . (7.2)

In the former case, α lifts to the element

α̂ = exp
(1

2
(θ0Γ05 + θ1Γ16 + θ2Γ27 + θ3Γ38 + θ4Γ49) + iψ

)

(7.3)

of Spinc(9, 1), where ψ is the angle along the U(1) direction. Since Γ05,Γ16,Γ27,Γ38 and

Γ49 are commuting with −(Γ05)
2 = (Γ16)

2 = (Γ27)
2 = (Γ38)

2 = (Γ49)
2 = −116×16, the Weyl

representation decomposes in subspaces which are the eigenspaces of the above matrices, i.e.

∆16 = ⊕σ0,...,σ4
Wσ0...σ4

, (7.4)
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where σ0, . . . , σ4 are signs restricted by the chirality condition to satisfy σ0σ1σ2σ3σ4 = 1.

Therefore acting on the subspace Wσ0...σ4
, one has

α̂(σ0, . . . , σ4) = exp

(

1

2
(σ0θ0 + iσ1θ1 + iσ2θ2 + iσ3θ3 + iσ4θ4) + iψ

)

. (7.5)

Now to find the supersymmetry preserved by a discrete quotient constructed from α, one

has to determined the spinors which are left invariant under the action of α̂. This in

particular implies that there must be angles or boosts such that

exp

(

1

2
(σ0θ0 + iσ1θ1 + iσ2θ2 + iσ3θ3 + iσ4θ4) + iψ

)

= 1 , (7.6)

for some choice of signs σ. Taking the complex conjugate, we conclude that

θ0 = 0 . (7.7)

Moreover, since we require at least 30 supersymmetries to be preserved, there are

σ0, σ1, . . . , σ4 such that if α̂(σ0, σ1, . . . , σ4) = 1, then α̂(σ0, σ̄1, . . . , σ̄4) = 1 for σ̄ = −σ. Ob-

serve that this is consistent with the chirality restriction. Using this and θ0 = 0, we find that

α̂(σ0, σ1, . . . , σ4)α̂(σ0, σ̄1, . . . , σ̄4) = e2iψ = 1 (7.8)

and so ψ = nπ, n ∈ Z. To preserve 30 real supersymmetries, we have to impose 15

conditions over the complex numbers. But since eiψ = ±1, if α̂(σ0, σ1, . . . , σ4) = 1, then

(α̂(σ0, σ1, . . . , σ4))
∗ = α̂(σ0, σ̄1, . . . , σ̄4) = 1. Therefore one can impose an even number of

conditions each time. As a consequence supersymmetry can reduce only mod 2 over the

complex numbers or mod 4 over the reals. This in particular excludes the existence of

discrete quotients with N = 30 supersymmetries.

It remains to see whether the lift of (7.2) can preserve 30 supersymmetries. In this

case, we have

α̂ = exp

(

1

2
[(Γ0 + Γ5)Γ9 + θ1Γ16 + θ2Γ27 + θ3Γ38] + iψ

)

. (7.9)

Observe that this can be rewritten as

α̂ = ρ

[

1 +
1

2
(Γ0 + Γ5)Γ9

]

, ρ = exp

(

1

2
[θ1Γ16 + θ2Γ27 + θ3Γ38] + iψ

)

. (7.10)

Now the invariance condition can be written as

ρ ǫ− = ǫ− , ρ ǫ+ + ρΓ09 ǫ− = ǫ+ , (7.11)

where we have decomposed the spinors in the eigenspaces V− ⊕ V+ of Γ05 as Γ05ǫ± =

±ǫ±. To preserve 30 supersymmetries at least 7 complex spinors in V− must satisfy the

first equation for ǫ−. Since Γ09 is invertible this would imply that the second invariance

equation cannot be satisfied on an at least seven-dimensional subspace of V+. So there is

no invariant complex 15-dimensional subspace in V− ⊕ V+ which is required to preserve 30

supersymmetries. Combining this with the result in the previous case, one concludes that

there are no quotients of flat space that can preserve 30 supersymmetries.
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7.2 Discrete quotients of AdS5 × S5

The isometry group of this background is SO(4, 2) × SO(6). Therefore one can choose

α = eX+Y where X ∈ so(4, 2) and Y ∈ so(6). In addition, it can be arranged such that

Spin(4, 2) × Spin(6) acts on the Weyl representation of Spin(9, 1) as ∆−
Spin(4,2) ⊗ ∆−

Spin(6),

where ∆−
Spin(4,2) ∆−

Spin(6) are the anti-chiral Weyl representations of Spin(4, 2) and Spin(6),

respectively. Therefore the lifted element α̂ of α can be written as

α̂ = eX+Y +iψ , (7.12)

where X and Y are Clifford algebra elements and ψ is an additional angle because of the

Spinc(9, 1) nature of the IIB spinors.

There is a unique normal form for Y up to a Spin(6) conjugation which we can take

to be

Y =
1

2
(θ1γ12 + θ2γ34 + θ3γ56) , (7.13)

where θ1, θ2 and θ3 are SO(6) rotation angles, and γi are Spin(6) gamma matrices. Moreover

∆−
Spin(6) can be decomposed in four complex one-dimensional spaces in which case one has

that

Y =
i

2
(σ1θ1 + σ2θ2 + σ3θ3) , (7.14)

where σ1σ2σ3 = 1, σi = ±1, due to the chirality restriction.

There are 25 possible normal forms for X up to SO(4, 2) conjugations. These have be

tabulated in [7] and we shall not repeat them here. As a consequence, we have to investigate

25 cases to see whether there are quotients of AdS5×S5 that preserve 30 supersymmetries.

In what follows, we shall use the numbering of cases as in [7] but we have made some

adjustments in the notation because of our different spinor conventions.

7.2.1 Cases 1, 2, 4, 10, 11, 12, 16, 24 and 25

In case 24, the normal form for X can be taken as

X =
1

2
(ζ1γ̃05 + ζ2γ̃12 + ζ3γ̃34) , (7.15)

where 0 and 5 are the time-like directions and the rest are spacelike, γ̃ are the gamma

matrices of Spin(4, 2) and ζi are angles. Decomposing ∆−
Spin(4,2) in one-dimensional complex

representations we get that

X =
i

2
(s1ζ1 + s2ζ2 + s3ζ3) , (7.16)

where s1s2s3 = 1 because of the chirality condition and sa = ±1. Therefore the lifted

element α̂ of α is

α̂(s1, s2, σ1, σ2) = e
i

2
(
P

a
saζa+

P

i
σiθi)+iψ . (7.17)
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To preserve 30 supersymmetries α̂(s, σ) = 1 for 15 out of 16 choices of signs for sa and σi

subject to the chirality conditions s1s2s3 = 1 and σ1σ2σ3 = 1. Without loss of generality

let us assume that α̂(s, σ) = 1 unless when σ1 = σ2 = s1 = s2 = −1 for which we take

α̂(−1,−1,−1,−1) 6= 1. Since α̂(−1,−1, 1, 1) = α̂(1, 1, 1, 1) = 1, then

(α̂(−1,−1, 1, 1))∗α̂(1, 1, 1, 1) = e−iζ1−iζ2 = 1 . (7.18)

Then observe that

e−iζ1−iζ2α̂(1, 1,−1,−1) = α̂(−1,−1,−1,−1) = 1 , (7.19)

which is a contradiction. Therefore if one assumes that α̂ preserves 30 supersymmetries,

then one can show that it preserves 32. So there are no such N = 30 supersymmetric

quotients of AdS5 × S5.

Before we proceed to other cases, notice that the same conclusion holds if one of the

angles ζ and/or one of the angles θ vanish. This can be shown in exactly the same way as the

general case above. In addition, if either two or more angles ζ vanish or two or more angles

θ vanish, then the decomposition of the Weyl representation of Spin(9, 1) with respect

to X + Y will be in subspaces of complex dimension more than one. Consequently, the

invariant subspaces will have dimension either 32 and all supersymmetry will be preserved

or always less than 30. Therefore one concludes that there are no N = 30 quotients even

if one or more angles ζ, θ vanish.

In the case 25 of [7], the normal form of X give rise to

X = ζ1γ̃01 + ζ2γ̃52 + ζ3γ̃34 , (7.20)

which after decomposing the Weyl representation in one-dimensional complex subspaces

one gets

α̂(s1, s2, σ1, σ2) = e
1

2
(s1ζ1+s2ζ2+is3ζ3+i

P

i
σiθi)+iψ , (7.21)

where the signs s and σ obey the chirality conditions as in the previous case. In this case

ζ1 and ζ2 are boosts. If for some signs α̂(s1, s2, σ1, σ2) = 1, then (α̂(s1, s2, σ1, σ2))
∗ = 1,

which implies that

es1ζ1+s2ζ2 = 1 . (7.22)

There are four possible uncorrelated choices for the signs s1 and s2. To preserve N = 30

supersymmetry for three of these choices the above condition must hold. Without loss of

generality one can take

eζ1+ζ2 = eζ1−ζ2 = 1 . (7.23)

This in turn gives ζ1 = ζ2 = 0. Consequently this reduces to (7.17) with two vanishing

angles. As we have shown such quotients do not preserve 30 supersymmetries. The same

conclusion holds if one or more of the boosts or rotation angles vanishes. Consequently,

one can also conclude that the normal forms of the cases 1,2,4,10,11,12 and 16 [7] do not

give quotients which preserve 30 supersymmetries.
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7.2.2 Cases 3, 5, 14, 15 and 17

In case 14, the lifted element is

α̂ = ρ e
1

2

(

(γ̃0+γ̃1)γ̃5+ζγ̃23

)

= ρe
1

2
ζγ̃23(1 + A) , (7.24)

where ρ ∈ Spinc(6) and A is a nilpotent generator, A2 = 0. Decompose ∆−
Spin(4,2) ⊗

∆−
Spin(6) = V+ ⊕ V− as γ̃01ǫ± = ±ǫ±. Then the invariance condition can be written as

ρ e
1

2
ζγ̃23ǫ− = ǫ− ,

ρ e
1

2
ζγ̃23(ǫ+ + γ̃05ǫ−) = ǫ+ . (7.25)

To preserve 30 supersymmetries, the first condition must be satisfied on an at least seven-

dimensional complex subspace W− of V−. In turn this implies that an at least seven-

dimensional subspace W+ of V+ is also invariant. Thus if ǫ+ ∈ W+, one concludes that

γ̃50ǫ− = 0, and since γ̃50 is invertible, ǫ− = 0, i.e. the spinors in W− are not invariant.

Therefore such quotients cannot preserve 30 supersymmetries. In fact one can show that

α̂ preserves at most 16 supersymmetries.

The proof for cases 15 and 17 is similar. In addition, 3 and 5 are special cases. In all

these cases, N = 30 quotients can be excluded.

7.2.3 Case 7 and 19

Let us begin with case 19. The lifted element can be written as

α̂ = ρe
1

2
ϕγ̃34eA+ζB , (7.26)

where ρ ∈ Spinc(6) and

A =
1

2
(γ̃5 + γ̃1)(γ̃0 + γ̃2) ,

B =
1

2
(γ̃02 − γ̃51) . (7.27)

It is clear that the element generated by γ̃34 commutes with all the other and

AB = BA = 0 , A2 = 0 , B2 = P− , B3 = B , (7.28)

where P± = 1
2(1 ± γ̃0251). Using these, one finds that

eA+ζB = (1 + A)[P+ + cosh ζP− + sinh ζB] . (7.29)

Decomposing ∆−
Spin(4,2) ⊗∆−

Spin(6) = V++ ⊕ V+− ⊕ V−+ ⊕ V−− according to the commuting

projections constructed from γ̃51 and γ̃02, one finds that the invariance equation can be

written as

ρ e
1

2
ϕγ̃34(ǫ++ − 2γ̃05ǫ−−) = ǫ++ ,

ρ e
1

2
ϕγ̃34 [cosh ζǫ+− + sinh ζǫ+−] = ǫ+− ,

ρ e
1

2
ϕγ̃34 [cosh ζǫ−+ − sinh ζǫ−+] = ǫ−+ ,

ρ e
1

2
ϕγ̃34ǫ−− = ǫ−− . (7.30)
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To obtain backgrounds with 30 supersymmetries, the last equation should have at least

three complex independent solutions ǫ−−. This means that there must exist angles θ, ψ

and ϕ such that ρ e
1

2
ϕγ̃34 = 1 for some selection of σ signs. Substituting this into the first

equation, since the kernel of γ̃05 is trivial, consistency requires that ǫ−− = 0. Thus such

solutions break more than 30 supersymmetries. In addition, case 7 can be treated in a

similar way.

7.2.4 Cases 6, 8, 20 and 21

The lifted element in case 20 can be written as

α̂ = ρe
1

2
ϕγ̃34eA+ζB , (7.31)

where ρ ∈ Spinc(6) and

A =
1

2
(γ̃5 + γ̃1)(γ̃0 + γ̃2) ,

B =
1

2
(γ̃05 + γ̃12) . (7.32)

Next observe that

A2 = 0 , AB = BA , B2 = −P− , B3 = −B , P± =
1

2
(1 ± γ̃0512) . (7.33)

Using these, it is straightforward to show that

eA+ζB = (1 + A)[P+ + cos ζP− + sin ζB] . (7.34)

The rest of the analysis to exclude quotients which preserve 30 supersymmetries is similar

to that of case 19 above. In addition, cases 6, 8 and 21 can be treated in a similar way.

All these cases do not give quotients with 30 supersymmetries.

7.2.5 Cases 9 and 22

The lifted element in case 22 is

α̂ = ρ e
1

2
ϕγ̃34eζA+λB , (7.35)

where

A =
1

2
(γ̃05 − γ̃12) , B =

1

2
(γ̃02 − γ̃51) . (7.36)

Observe that

AB = BA = 0 , A2 = −P+ , A3 = −A , B2 = P− , B3 = B , (7.37)

where P± = 1
2(1 ± γ̃0512). Using these we find that

eζA+λB = (P− + cos ζ P+ + sin ζ A)(P+ + cosh λP− + sinhλB)

= cosh λP− + cos ζ P+ + sinhλB + sin ζ A . (7.38)
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Decompose ∆−
Spin(4,2) ⊗ ∆−

Spin(6) = V+ ⊕ V− using the projectors constructed from γ̃0512.

Observing that Bǫ+ = Aǫ− = 0, one can write the invariance equation as

ρ e
1

2
ϕγ̃34 [cos ζ ǫ+ + sin ζγ̃05ǫ+ + cosh λǫ− + sinhλγ̃02ǫ−] = ǫ+ + ǫ− . (7.39)

Since γ̃05 and γ̃02 commute with the projectors constructed from γ̃0512, one can rewrite the

invariance equations as

ρ e
1

2
ϕγ̃34 eζγ̃05ǫ+ = ǫ+ ,

ρ e
1

2
ϕγ̃34 eλγ̃02ǫ− = ǫ− . (7.40)

The above invariance conditions can be simplified somewhat by observing that the

Spin(4, 2) chirality condition on the spinors together with the projections constructed from

γ̃0512 imply that γ̃34ǫ± = ∓iǫ±. To preserve 30 supersymmetries either V+ or V− must

have a seven-dimensional invariant subspace. Using a similar argument to the one we have

presented in cases 24 and 25, one can easily show that if V+ has a seven-dimensional in-

variant subspace, then all of V+ is invariant, and similarly for V−. Therefore there are no

such quotients with 30 supersymmetries. Case 9 can be analyzed in a similar way.

7.2.6 Case 13

The lifted element in this case is

α̂ = ρ eA , (7.41)

where

A =
1

2
(γ̃05 + γ̃01 + γ̃03 − γ̃52 − γ̃12 − γ̃23) . (7.42)

Observe that

A2 = −γ̃023(γ̃1 + γ̃5) , A3 =
1

2
γ̃12(1 + γ̃02)(1 + γ̃15) . (7.43)

Decomposing the spinors using the projectors constructed by γ̃15 and γ̃02, one finds that

the invariance equation can be decomposed as

ρ ǫ++ = ǫ++ ,

ρ (ǫ+− + γ̃03ǫ++) = ǫ+− ,

ρ (ǫ−+ + 2γ̃01ǫ+− + γ̃13ǫ++) = ǫ−+ ,

ρ (ǫ−− + γ̃03ǫ−+ − γ̃13ǫ+− +
1

3
γ̃12ǫ++) = ǫ−− . (7.44)

It is straightforward from these to argue that there are no so such quotients which preserve

30 supersymmetries.
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7.2.7 Cases 18 and 23

The lifted element for case 18 is

α̂ = ρ eζA+B , (7.45)

where

A =
1

2
(∓γ̃05 + γ̃12 + γ̃34) , B =

1

2
(γ̃03 − γ̃13 ± γ̃54 − γ̃24) . (7.46)

Next observe that

[A,B] = 0 , B3 = 0 . (7.47)

Using these and without loss of generality choosing one of the signs in (7.46), one finds

that the equation for invariance can be written as

ρ eζA[ǫ++ + ǫ−− + γ̃03ǫ+− + γ̃54ǫ−+ + γ̃0543ǫ++] = ǫ−− + ǫ++ ,

ρ eζA[ǫ+− + ǫ−+ + γ̃03ǫ++ + γ̃54ǫ++] = ǫ+− + ǫ−+ , (7.48)

where we have decomposed ∆−
Spin(4,2)⊗∆−

Spin(6) = V++⊕V−+⊕V+−⊕V−− with respect to the

projectors constructed from γ̃01 and γ̃52, and use the property of A to commute with γ̃0152.

In addition, using the property of A to commute with the projectors 1
4(1 ± γ̃01)(1 ± γ̃52),

with the signs correlated, the first equation in (7.48) can be decomposed further as

ρ eζAǫ++ = ǫ++ ,

ρ eζA[ǫ−− + γ̃03ǫ+− + γ̃54ǫ−+ + γ̃0543ǫ++] = ǫ−− . (7.49)

To preserve 30 supersymmetries, the first equation above has to have at least three solu-

tions. On these solutions, one can show that ρe
i

2
ζ = 1. On the three dimensional eigenspace

in V−− of ρ eζA with the same eigenvalues consistency requires that

γ̃03ǫ+− + γ̃54ǫ−+ + γ̃0543ǫ++ = 0 . (7.50)

This condition can be solved to express at least three complex components of ǫ in terms

of the remaining 13 components. Thus there are not 15 independent complex solutions to

the invariance condition, and so such quotients cannot preserve 30 supersymmetries. The

case 23 can be treated in a similar way.

7.3 Discrete quotients of plane wave

The isometry superalgebra2 of the maximally supersymmetric plane wave [14] is

[e−, ei] = e∗i , [e−, e∗i ] = −4λ2ei , [e∗i , ej ] = −4λ2δije+ ,

[Mij , ek] = −δikej + δjkei , [Mij , e
∗
k] = −δike

∗
j + δjke

∗
i , i, j = 1, 2, 3, 4 and 6, 7, 8, 9

[e+, Q] = 0 , [e−, Q] = iλ(I + J)Q ,

[ei, Q] = −iλIΓiΓ+Q , [e∗i , Q] = −2λ2IΓiΓ+Q , i = 1, 2, 3, 4

[ei, Q] = −iλJΓiΓ+Q , [e∗i , Q] = −2λ2JΓiΓ+Q , i = 6, 7, 8, 9

[Mij , Q] =
1

2
ΓijQ , I = Γ1234 , J = Γ6789 , (7.51)

2We have not included the anti-commutator of the odd generators Q because it is not used in the analysis.
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where λ is a real parameter. It can be read off from (7.51) that the isometry algebra of the

maximally supersymmetric plane wave is so(4)⊕ so(4)⊕s t, where t = so(2)⊕s h17 and h17

is a Heisenberg algebra. The most general element of the isometry Lie algebra is

X = u+e+ + v−e− + viei + wie∗i +
1

2
θijMij , (7.52)

where the indices i and i, j are restricted as in (7.51). Up to a conjugation, X can be

brought to either

X = u+e+ + v−e− +

4
∑

n=0,n 6=2

w2n+1e∗2n+1 + θ1M12 + θ2M34 + θ3M67 + θ4M89 (7.53)

if v− 6= 0, or

X = u+e+ +

9
∑

i=1,i6=5

viei +

4
∑

n=0,n 6=2

w2n+1e∗2n+1 + θ1M12 + θ2M34 + θ3M67 + θ4M89 (7.54)

if v− = 0. The action of the isometries on the Killing spinors can be read off from

the commutators of the generators of the isometries with those of super-translations. In

particular a lifted element is

α̂ = eA+B , (7.55)

where

A = iv−λ(I + J) +
1

2
(θ1Γ12 + θ2Γ34 + θ3Γ67 + θ4Γ89) + iψ ,

B = −λ

[

I

4
∑

i=1

Γi(iv
i + 2λwi) + J

9
∑

i=6

Γi(iv
i + 2λwi)

]

Γ+ . (7.56)

The lifted generator α̂ has been partially adapted to the normal forms of X but the expres-

sion above will suffice for the analysis that follows. The Killing spinors are invariant along

e+ translations and so any identification along this direction preserves all supersymmetry.

Writing ǫ = ǫ+ + ǫ− with Γ+ǫ+ = 0, we find that the invariance condition can be written

as

eAǫ− = ǫ− ,

eA(ǫ+ + Γ+βǫ−) = ǫ+ , (7.57)

where β is a linear map that can be determined. Let us start by examining the first

equation. The chirality of IIB spinors together with the lightcone projection implies that

(I + J)ǫ− = 0. Therefore only the rotation part of eA acts on ǫ−. Thus one has

e
i

2

P

4
i=1

σiθi+iψǫ− = ǫ− , σ1σ2σ3σ4 = −1 . (7.58)

The restriction on the σ is due to the chirality condition on the spinors. There are 8 choices

of signs giving rise to 8 independent conditions. N = 30 supersymmetry requires that at
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least 7 conditions must hold. However one can show that if 7 conditions hold, then they

imply the 8th. Moreover θi = 2πni and ψ = n0π, where n0, ni ∈ Z. These angles are

associated with the identity rotation which lifts to the identity element, so in what follows

we shall set θi = ψ = 0. However observe that the invariance condition on ǫ− does not

restrict v−.

Next let us turn to the second equation and consider the case v− = 0. Then to preserve

30 supersymmetries, the kernel of β should have complex dimension 7. It turns out that

βǫ− = λ[I

9
∑

i=1,i6=5

Γi(iv
i + 2λwi)]ǫ− . (7.59)

So there is a non-trivial kernel iff

−v2 + 4λ2w2 − 4iλv · w = 0 , (7.60)

which in turn implies that v · w = 0 and v2 = 4λ2w2. However in such a case the kernel

has dimension 4 or 8. The latter occurs if v = w = 0. Thus there are no N = 30 quotients

for v− = 0.

Next let us consider the case where v− 6= 0. In such a case the e− generator acts

non-trivially on ǫ+. To continue observe that α̂ factorizes as

α̂ = eiv−λI−λI
P4

i=1
Γi(ivi+2λwi)Γ+ eiv−λJ−λJ

P9
i=6

Γi(ivi+2λwi)Γ+ . (7.61)

Using that I and IΓiΓ+ anti-commute and the latter is nilpotent, and similarly for J and

JΓiΓ+, and after some computation, one finds that

e2iλv−Iǫ+ + Γ+
sin(λv−)eiλv−I

λv−

9
∑

i=1,i6=5

[iλvi + 2λ2wi]IΓiǫ− = ǫ+ . (7.62)

Thus one has that

β =
sin(λv−)eiλv−I

λv−

9
∑

i=1,i6=5

[iλvi + 2λ2wi]IΓi . (7.63)

As in the case with v− = 0, we have to investigate the kernel of β. If λv− = nπ, n ∈ Z−{0},
then all supersymmetry is preserved. As it can be seen, it is remarkable that the Killing

spinors in [14] are periodic in v− with precisely this period. If λv− 6= nπ, then β has

a non-trivial kernel iff v2 = 4λ2w2 and v · w = 0. As in the case with v− = 0, one

concludes that the kernel has dimension either 4 or 8. Thus such quotients do not preserve

30 supersymmetries.

8. Concluding remarks

We have shown that all N > 28 supersymmetric IIB backgrounds are maximally supersym-

metric. The proof relies on the property that these backgrounds have vanishing one-form

and three-form fluxes, P = G = 0, which arises as consequence of the homogeneity of
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N > 24 backgrounds and the algebraic Killing spinor equation of IIB supergravity. In ad-

dition, the supercovariant curvature vanishes subject to the field equations and the Bianchi

identities of the theory. Therefore all N > 28 supersymmetric IIB backgrounds are locally

maximally supersymmetric. Finally, 28 < N < 32 backgrounds cannot be constructed as

discrete quotients of maximally supersymmetric ones.

It is natural to ask whether it is possible to extend the above results to other near

maximal backgrounds with N ≤ 28. This does not seem straightforward. In particular,

it is known that there are plane wave backgrounds with 28 supersymmetries [25, 26].

Significantly, these backgrounds have non-vanishing three-form flux, G 6= 0. Thus apart

from the maximally supersymmetric case, 7/8 is the highest fraction of supersymmetry

that IIB backgrounds preserve.

The existence of backgrounds with 28 supersymmetries does not necessarily imply

that there are supersymmetric backgrounds for all N < 28. Some more fractions of su-

persymmetry may be excluded as a conjecture in [15] indicates. Such cases will exhibit

supersymmetry enhancement similar to that we have shown for backgrounds with N > 28.

It would be of interest to classify all IIB backgrounds with 28 supersymmetries as the first

near maximal case that has solutions which do not have maximal supersymmetry. This

may be possible using the homogeneity of these backgrounds.

Our results can be extended to investigate nearly maximally supersymmetric IIA back-

grounds. This is because of the similarities between the Killing spinor equations of IIA and

IIB supergravities; in particular both have an algebraic Killing spinor equation. In fact, it

appears that the nearly maximally supersymmetric solutions of IIA supergravity are more

restricted than those of IIB. In particular, there is a unique maximally supersymmetric

IIA solution, the Minkowski spacetime, and the N = 31 IIA backgrounds are maximally

supersymmetric. The N = 30 IIA backgrounds can be investigated in a way similar to

those of IIB by appropriately modifying the IIB complex linearity argument for the IIA

dilatino Killing spinor equation and showing that the supercovariant curvature vanishes.

In eleven-dimensions, the investigation of nearly maximally supersymmetric back-

grounds is more involved. This is because eleven-dimensional supergravity does not have

an algebraic Killing spinor equation. So an extension of our results to eleven-dimensions

depends crucially on the properties of the gravitino Killing spinor equation. Nevertheless,

it would be of interest to see whether the results of [3] can be extended to backgrounds

with less than 31 supersymmetries.
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